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Low-Prandtl-number convection in a 
layer heated from below 

By R. M. CLEVER A N D  F. H. BUSSE 
Institute of Geophysics and Planetary Physics and Department of Earth and Space ScienccR, 

University of California, Los Angeles, California 90024, U.S.A. 

(Received 5 November 1979 and in revised form 5 March 1980) 

Steady solutions in the form of two-dimensional rolls are obtained numerically for 
convection in a horizontal layer of a low-Prandtl-number fluid heated from below. 
Prandtl numbers in the range 0.001 < P < 0.7 1 are investigated for Rayleigh numbers 
between the critical value, R = 1708, and R = 20,000 in the case of rigid boundaries. 
The calculations reveal that the convective heat transport is relatively independent 
of the Prandtl number at  Rayleigh numbers greater than a finite critical value R, of 
the order of 5 x 1 03. At R = 10,000 the convective heat transport varies by only about 
30% for Prandtl numbers in the range investigated. As the Rayleigh number is 
increased above the critical value R,, the streamlines of the convection flow become 
circular, independent of the horizontal wavelength as long as the latter is larger than 
or about equal to twice the height of the layer. 

1. Introduction 
The problem of thermal convection of a Boussinesq fluid in a horizontal layer heated 

from below is characterized by two non-dimensional parameters, the Rayleigh number 
and the Prandtl number. Since the Rayleigh number R is defined in such a way that 
the onset of convection occurs at a value R, independent of the Prandtl number P ,  
the latter usually plays a secondary role in the study of convection. But the influence 
of the Prandtl number on nonlinear properties such as the heat transport is significant 
and not yet well understood. In particular, in the limit of low Prandtl number, large 
discrepancies exist between various theoretical predictions for the convective heat 
transport. This paper and its companion paper (Busse & Clever 1980) are addressed 
to this problem. 

Although heat transport by convection in liquid metals is important in many 
engineering applications, most studies of low-Prandtl-number convection have been 
motivated by astrophysical applications. Since Prandtl numbers in stars may be as 
low as 10-8, while laboratory experiments are limited by P 2 lo-,, there is a strong 
need for theoretical extrapolations to the limit P+ 0. The simplest theoretical results 
are based on a perturbation theory which is valid for slightly supercritical values of 
the Rayleigh number. The calculations of Schliiter, Lortz & Busse (1965) indicate that 
the convective heat transport decays proportional to P2 at a given small value of 
R - R, with one exception: convection in the form of two-dimensional rolls with 
stress-free upper and lower boundaries exhibits a heat transport independent of P .  
Similar results have been obtained more recently by Gough, Spiegel & Toomre (1975) 
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from nnmerical calculations of high-Rayleigh-number convection based on a mean- 
field approximation. It is physically unreasonable that the large discrepancy of the 
heat transport caused by a modification of the boundary condition should persist over 
an extended range of the Rayleigh numbers. Indeed, Jones, Moore & Weiss (1976) 
discovered in the related case of axisynimetric convection that the convective heat 
transport tends to become independent of P when the Rayleigh number exceeds a 
second critical value R, which is of the order 1.5 R,. The low-amplitude convection 
mode changes in the neighbourhood of R, into a mode characterized by the property 
that the Jacobian between vorticity and stream function approximately vanishes. 
The disappearance of the nonlinear term in the vorticity equation permits a strong 
rise of the amplitude of convection which, in turn, yields a high heat transport. The 
same effect was demonstrated analytically by Proctor (1977) in the case of convection 
in a horizontal cylindrical tube heated from below. 

Both the axisynimetric convection cell with stress-free boundaries of Jones et al. 
(1976) and the horizontal cylinder of Proctor (1977) represent rather special cases of 
convection and the question remains whether the phenomenon of a second critical 
Rayleigh number R, for the onset of inertial convection represents a general feature 
of convection in lorn-Prandtl-number fluids. I n  this paper, numerical results for two- 
dimensional convection in a horizontal fluid layer with rigid boundaries will be pre- 
sented indicating the transition to inertial convection in low-Prandtl-number fluids 
and the disappearance of the Prandtl-number dependence of the heat transport a t  
moderately high Rayleigh numbers. In  the companion paper (Busse & Clever 1980), a 
simple boundary-layer model is derived which yields explicit asymptotic expressions 
in the small Prnndtl-number limit in reasonahly close agreement with the numerical 
results. 

2. Mathematical formulation of the problem 
A complete mathematical description of the problem has been given in an earlier 

paper (Clever & BUSW 1074) and only a brief outline will be given here. The reader is 
referred to this earlier work for n detailed description of the analysis. 

The theoretical description of two-dimensional convection rolls is based on the 
Navier-Stokes equations and the heat equation in the Boussincsq approximation. 
Using the layer thickness d ,  d 2 / K  and ATIR as scales for length, time and temperature, 
equations (1)-(3) of Clever & Bnsse (1974; hereafter referred to as CB) are obtained. 
AT is the temperature difference between the boundaries of the layer and K is the 
thermal diffusivity . The physical properties enter the non-dimensional description 
of the problem in the form of the Rayleigh and Prandtl nirmbers, defined by 

R = ygATd3 f V K ,  P = V / K ,  

where y is the thermal expansion coefficient, g the acceleration of gravity, and v is the 
kinematic viscosity. The fact that the Boussinesq approximation reduces the equation 
of continuity to V .  v = 0 allows UP to eliminate the latter by introducing the general 
representation for a solenoidal vector field 

where k is the unit rector opposite to the direction of gravity. After introducing a 
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Cartesian system of co-ordinates, with the z co-ordinate in the k direction and opera- 
ting on the equation of motion with 6 - ,  we obtain the following equations for 
Q and 8. 

a,(V4Q-e) = (a:,Qa;,V2Q- a:,@:z V2Q), ( 2 . 1 ~ )  

(2.lb) 

Since we are interested in steady two-dimensional solutions, we have neglected the x 
and t derivatives. As shown in CB, the function $ does not enter the problem in this 
case. The boundary conditions are given by 

Q = a , Q = e = o  at Z =  & # .  (2.2) 
The Galerkin technique is used for the solution of equations (2.1), and q5 and 0 are 
expanded in terms of orthogonal functions. 

$ = c. cos (ha,) 9, ( z )  2 ( 2 . 3 ~ )  

(2 .3b)  

A, 

= 2 bA, sin (na,)fv 
Av 

where the functions g,, f, satisfy the boundary conditions (2.2). The functions 

f,(z)=sinvn(z-$), v =  1,2 ,... 
are alternating even and odd in z ,  as are the functions g,(z), which satisfy four bound- 
ary conditions and are given in CB. Finally, we note that the symmetry of the equations 
allows us to restrict ourselves to the subset of solutions for which the coefficients with 
odd values of A + v vanish. Actual computations are carried out by neglecting all 
coefficients with 

h+v > N .  (2.4) 

An acceptable solution is obtained when N is sufficiently large such that the co- 
efficients change very little as N is rcplaced by N + 2. 

3. Results and discussion 
3.1. Numerical convergence 

The results of the calculations for two-dimensional convection rolls at low Prsndtl 
number presented in CB are extended to a larger range of Rayleigh and Prandtl 
numbers. This extension has been carried out by means of a new computer code 
permitting a much larger value of the truncation parameter N to be used in the numeri- 
cal calculations. Whereas previous computations were restricted to N < 16, computa- 
tions with N increasing up to 30 have since then been accomplished. The number of 
unknown coefficients uAv and b,, has thus increased from 136 to 465 and the computa- 
tional time per solution has increased by about a factor of 40. For N = 30, approxi- 
mately 40 minutes of computational time on an IBM 3033 are required. 

The major factor restricting the range of Rayleigh and Prandtl numbers that can be 
investigated is the computational expense for obtaining solutions at  large values of 
the truncation parameter N .  Owing to the increased complexity of the flow and the 
tendency towards boundary layer formation as the Rayleigh number increases and 
the Prandtl number decreases, large values of N are necessary to resolvc the dctails 
of the flow with sufficient accuracy. Jn tnhle 1, the convergence of thc! Niiswlt nurnbcr 
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2.4 1 I I I I I I 

16 18 20 22 24 26 28 30 

N 
FIGURE 1 .  The convergence of the Nusselt number with increasing values of the 
truncation parameter, N ,  for various Prantltl numbers (given on curves) at R = 1 0 4  
and a = a,. 

N u  with increasing values of N for various Rayleigh numbers is given in the case 
P = 0.01. We note that although N = 16 is sufficient to converge the solution up to 
values of R - R, of the order of only several hundred, N = 28 or 30 is required for 
approximate convergence of the solution at Rayleigh numbers up to about lo4. b’e 
note also that the convergence criterion used in CB, whereby the solution is con- 
sidered to be converged when Nu- 1 changes by less than 2 yo as N is increased to 
N + 2, is insufficient for large values of N .  A more appropriate criterion would be that 
N u  - 1 changes by less than 2 yo when N is increased by about 20 yo. According to 
this criterion, the solution for P = 0.025 is well converged, as shown in figure 1 ,  while 
the solution for P = 0.01 is not far from its asymptotic value, as suggested by the 
significant second differentials of the computed values. On the other hand, the 
solution for Y = 0.003 is still quite far from a converged value. Because of the similarity 
of the curves in figure 1 ,  an asymptotic value of the Nusselt number could be guessed 
by extrapolation. But this procedure has not been implemented. 
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lo-' 

10-3 

1 0 2  103 I 04 
R - R c -  

FIGURE 2. The Nusselt iiumber as function of R - R, for different Prandtl numbers in 
thc raw a = a,. Convergence of tho solntion for the clanhcd portion of the riirve for 
I' = 0.003 is poorer than a f1.w per cent. 

3.2. The heat transport 

Figure 2 exhibits the dependence of the Nnsselt number on the Rayleigh number for 
Prandtl numbers in the range 3 x < P < 0.71. The most striking feature is the 
contrast between the variation proportional to P2 of Xu - 1 at  low values of R - R, 
and the near disappearance of any variation of Xu with P as R approaches 104. Three 
regions can be distinguished. The small amplitude region for which the perturbation 
results of Schliiter et al. (1  965) are applicable is followed by a transition region as 
R - R, exceeds a value between 10 and 30. The rise of the heat transport in the transi- 
tion region becomes steeper for decreasing Prandtl number in order that the large 
Prandtl-number value can be approached within a finite interval of the Rayleigh 
number. But i t  is difficult to say how large this interval is, since the curves shown in 
figure 2 approach each other relatively slowly as P decreases. Finally, a t  Rayleigh 
numbers approaching lo4, the heat transport becomes nearly independent of the 
Prandtl number as shown in more detail in figure 3. 
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10-3 10-2 lo-' 1 

P 
FIGURE 3. The dependence of the Nusselt number on the Prandtl number for selected 

values of R in the caae a = a,. 

3.3. The velocity field 
The origin of the sharp rise of the heat transport in the transition region is best under- 
stood in terms of the evolution of the streamline pattern of the velocity field as the 
Prandtl number decreases. Figure 4 demonstrates that the streamlines become more 
circular as P tends to zero. In  the same limit, the lines of constant vorticity, 
OJ E avV2q5, become approximately coincident with the streamlines, as shown in figure 
5.  To the extent to which w is only a function of the stream function ayq5, the right- 
hand side of equation (2.la) vanishes, since it can be written in the form 

P-l{a,wa,a,+ - a,wa;,+>. (3.1) 

Only the boundary conditions prevent the term (3.1) from vanishing entirely, and the 
high values that w assumes in the boundary layers indicate that most of the viscous 
dissipation takes place there. Viscous and Reynolds stresses become of comparable 
order of magnitude near the top and bottom boundaries and balance the buoyancy 
force which is generated as the temperature diffuses from the boundaries into the 
interior and is advected by the flywheel-type motion. 

The tendency towards a circular flow has been surprising in view of the highly 
anisotropic nature of the problem owing to the no-slip condition at top and bottom 
boundaries and the stress-free conditions on the side walls of the convection cells. In  
previous studies of 'flywheel' convection, as the circular motion has been called, the 
anisotropy was far less pronounced. In the problem of an axisymmetric convection 
cell in which the phenomenon of inertial convection was discovered by Jones et al. 
( 1976), the misotropy between the radial and vertical direction is relatively small 
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P = 0.01 

FIGURE 4. Development of ‘flywheel’ convection as P decreases for R = lo*. The plots 
depict the stream function 9 = at intervals of 1/10 of the maximum value. The 
flow of the right-hand roll is in the clockwise direction. 

because stress-free conditions were imposed on all boundaries. A circular flow is most 
easily established in the example of a circular horizontal cylinder studied by Proctor 
(1977). Thus the impression prevailed that inertial or flywheel convection may only 
exist as a special phenomenon under favourable conditions. The present results 
challenge this impression and indicate the possible realization of ‘flywheel ’-convection 
rolls under general circumstances. 
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P = O . l  

P = 0.025 

P = 0.01 

P = 0.003 

FIG&E 5. The lines of constant vorticity corresponding to the cases 
shown in figure 4. 

The extent to which the motion becomes circular is shown in figure 6, where the 
z dependence of the z component and the z-dependence of the x component of the 
velocity field are compared. The different boundary conditions affect the profiles only 
in a small boundary-layer region. The isotherms shown in figure 7 do not seem to differ 
much from corresponding isotherms in high-Prandtl-number convection. The major 
effect of thc decreasing Prandtl number seems to be thc slight dip in the i,sothernis of 



10 

z 
Y - 4 2 %  

FIGURE 6. A comparison of vY (solid) and vz (dashed) for 0 < z < 0.5 and - (n/&234) 
d y d 0, nt y = 0 and z = 0, respectively, in the case R = 10' and P = lo-*. 

P = 0.003 

FIGURE 7. The isotherms of the temperature for R = lo4, u = a, in the case P = 0.1 
and P = 0.003. 

the rising hot plume and of the descending cold plume which is caused by the relatively 
low value of the vertical velocity a t  the boundary of the roll. The circular flow is still 
realized when the horizontal wavelength 2nIa exceeds the value of about 2, which is 
characteristic for the onset of convection. Figure 8 indica.tes that very little motion 
exists between the circular rolls and the temperature distribution does not deviate 
much from the static state in that region. The vanishing of expression (3.1) does not 
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FIGURE I). Streamlines (av$ = const.) and isotherms for u = 2.2, P = 0.025, R = lo4. 

FIGURE 9. Streamlines ( a v $  = const.) at intervals of 1/10 of the maximum value for 
El = lo4, P = 0.025, u = 4.2. 

require circular streamlines, although the latter seem to be preferred as the just- 
discussed example indicates. A circular flow would actually be rather inefficient in 
transporting heat if the diameter of the roll is less than the height of the layer which 
would be required for wavelengths 2n/a less than 2. In this case, elliptically shaped 
streamlines occur as shown in figure 9. The fact that the corresponding heat transport is 
even larger than in the case of circular streamlines is surprising, but fits into the general 
trend that the maximum of the heat transport is always reached for wavenumbers 
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R - R ,  
FIGURE 11. The kinetic energy plotted as a function of the Rayleigh number for ditferent 

Prandtl numbers in the case a = a,. 

larger than a,. A particular example of the dependence of the heat transport on the 
wavenumber a is shown in figure 10. The relatively sharp decay of the convective 
heat transport towards low wavenumber is essentially a geometrical effect. Since the 
‘flywheel’-convection rolls fill only the fraction a/n of the layer the convective heat 
transport is decreased by about the same fraction from the value a t  u x n. 

Besides the heat transport, the mean kinetic energy of motions is the most import- 
ant integral property of convection. Since both properties are related to each other, it 
is not surprising that the dependence of K E &(v. v) on the Rayleigh number exhibits 
a similar variation with the Prandtl number as the heat transport. Figure 11 demon- 
strates that K varies proportional to P? for a low value of R - R,, while it becomes 
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1 I 

I 

-i 
2 

0.1 

0.0 1 
1 0 2  103 104 105 

R - R ,  
FIGURE 12. The dependence of the heat transport on the Rayleigh number for convec- 
tion in mercury (P = 0-025). The numerical results (a = a,, solid curve) are seen in 
comparison with experimental measurements of Krishnamurti ( 1974), given by the 
dashed line, and of Rossby (1969) in which case data for layers of depth d = 0.19 cm 
(o), d = 1.0 cm ( x ), d = 1.8 cm ( A )  are shown. 
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nearly independent of P as R approaches values of the order 104. The same figure also 
indicates that K increases nearly proportional to R - R, at high values of R. 

4. Concluding remarks 
The lowest Prandtl number for which experimental measurements of convective 

heat transport in a layer heated from below have been obtained is 0.025 corresponding 
to mercury. Experiments with liquid sodium could yield data for Prandtl numbers as 
low as 0.01, but this has not yet been achieved to our knowledge. It is difficult for 
several reasons to compare the experimental measurements with numerical results 
of the kind presented in this paper. Even in high-Prandtl-number fluids, additional 
information about the convection flow such as the wavelength of the convection rolls 
is needed before a sensible comparison can be made (Willis, Deardorff & Somerville 
1972). In  the case of mercury, the major difficulty is that convection rolls become 
unstable owing to the oscillatory instability at a Rayleigh number slightly above the 
critical value and certainly below the value for the onset of inertial convection. But 
there are indications that some kind of inertial convection is realized, even though the 
convection flow is time dependent and three dimensional. Rossby’s (1969) data show 
clearly a very low convective heat transport at  small values of R - R,, while the slope 
of the Nu versus R curve is increasing for higher values of R - R, in distinct contrast 
to the results for high-Prandtl-number convection. Similar results have been obtained 
by Krishnamurti (1973). Although there seems some qualitative similarity between 
theory and experiment, a considerable discrepancy remains between the measured 
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data and numerical predictions as shown in figure 12. The numerical values have been 
obtained for at = atc and exceed the measured data by a factor of two for R 2 3000. 
But since this discrepancy is much smaller than if the prediction of the perturbation 
theory of Schliiter et al. would be used, it must be concluded that a mechanism similar 
to inertial convection takes place in the three-dimensional time-dependent convection 
flow realized in the experiment. 

The research reported in this paper was supported by t h e  Atmospheric Science 
Section of the U.S. National Science Foundation and by the Kernforschungszentrum 
Karlsruhe, West Germany. 
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